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Determination of the form of equal strength hole contours in a perforated plane under a 

specified load, i, e, the inverse problem, was formulated and solved with sufficient degree 
ofgenerality by Cherepanov Il. 21 who reduced it to the Dirichlet problem for the exter- 
ior of a system of parallel slits in a plane,in the class of functions with power singular- 
ities at the ends of the slits. and a closed solution was obtained in a number of cases. In 

the present paper the initial problem for an arbitrary* finitely connected region is reduced 
to a Fredbolm-type equation relative to the density of integral representation of the func- 

tion which maps conformally a plane with circles excluded, onto a plane of the same 

connectivity with an unknown boundary. The equation obtained is solved by the method 

of least squares arrd this leads, in the case of any finitely connected region, to an unique 
computational scheme which can be programed into a computer. The coefficients of the 

corresponding algebraic system are determined and a one-parameter family of the con- 
tours sought is con&ructed for a plane, symmetrically periodic distribution of holes, as 
an example. 

As we know [3”Jt a canonical domain obtained from the $,-plane by removing n circb~, 
can be mapped onto any n-connected domain 8+ of the complex z-plane with a point 

at infinit)r. When n > 2 , the mapping o. (r;) which has the form w, ( 5) = C t -i- w ( 51, 
where o (5) is bounoed at infinity, depends on 3n real parameterss, six of which (e. g. 

one circumference, one fixed point on this circumference and a center of another cir- 

cumference) can be specified arbitrarily, and C is a scale multiplier, Consequently, a 

system of contours of equal strength, if it exists, forms a (3n - Gf-parameter family. 

The limits of variation of the parameters can be found from geometrical considerations, 
The presence of symmetry may lead to reduction in the number of parameters. 

We have the following relations [4] for determining the stress components at the bonn- 

dary I? of the region S, : 
‘b + ue = 4Re@, (r$ 

2 (5 - a$ 
% -oPf 2it,= 

r&am 
(T(4) cho’ (U f wo’ (41 T@ (4)) 

Here o,, oe and T,.sdenote the normal and shear stresses in a polar coordinate system 
with a pole at the center a~ of a circle of radius rk and a boundary fk> k = 1, 2, _ 1 ., R. 

ff a homogeneous,sta~ of stress with the stress components oX$ oY and tXB is given at 
infinity, then mpo (t;) and yf, f 5) have the form [4] 
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40 (5) = ‘1.l (cc + U’J + @ (5) 
yo (5) = ‘12 (q/ - ux)+i%ll+y((5) 

where 4 (5) and Y (5) are holomorphic in S, and have an asymptotics of the order 
0 W2) when z + 03 . Assuming that Us = p at all contours, we set us = a, + ur, - p 
to find, that in this case (1) has a solution [5] 

00 (5) = ‘!a (a, + $1 

and (2) reduces to the relation 

Cttrl;d ar 20! I” ) -J 

(4_ "k)2 + (,"__ =k)a'= Cb + a'(4) y (5) (3) 

a = ‘:2 (a, + U’J - p + iT, b = V2 (a,,- ax) + i%,, 

Let us now turn our attention to the second term in the left-hand side of (3). Taking 

into account the fact that Q2 / (4 - ak)’ = - dE / dE when E E Ik, we can write this 
term in the form _ 

~(4 + NJ - 0 (4) = 

G 
(4) 

Substituting (4) into (3) and integrating, we obtain 

b 'La F(E)+ocn=-c,<-c 4_ak +dk 

‘? E rkct k = 1, 2, . . ., n 

The function F (5) is holomorphic in S,, F’ (i) = o’ (5) Y (5) / a and dk are arbit- 
rary constants. Varying dk, if necessary, we can reach the state when the bounded func- 
tions F (5) and o (5) decrease at infinity. To solve the boundary value problem (5) we 
shall write, following Sherman [S], F (5) and o (Q in terms of the Cauchy-type integ- 

rals 

where p (1) is a smooth complex-valued function on I. The expressions (6) satisfy the 
condition of decreasing at infinity. Substituting (6) into (5), we obtain 

1 
u (4) + 2ni s 

t--S - u(t)d In-- 
t--c 

d,=- C ;g-.& (7) 
r 

the constants dkcan be determined from the relation 
1 

dk=- %,rk 
- u(t)dS. dS=Idt( 

s 

rk 

(8) 

Equation (7) represents a Fredholm-type equation with a real, symmetric kernel. Sepa- 
rating the real and imaginary parts we obtain a pair of integral equations relative to 

potentials (U (t) and Y (t) of a double layer, of a modified [7] Dirichlet problem in the 
class of bounded functions continuous in S, . (In [Z] a dual Dirichlet problem was solved 
in a class of functions with 2 n square root-type singularities at the slit comers). 

Since the above equations have unique solutions [7], Eq. (7) and conditions (8) also have 
a solution for any arbitrary value of the right-hand side. When n = 1 , Eq.(7) has the 
obvious solution F (5) = 5, 0 (5) = ba-‘i?. The function o. (5) = C (5 + b~-lc-~) 
coincides with one obtained in [2] if in addition we map the outside of the unit circle 
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on the outside of the segment r-1, l] using the Joukowski function 

v(~)=‘/a(5-i- 5-l) 

When n > 1 , we can solve (‘7) using the method of least squares in L, (I’) and, since 

T is composed of circumferences, use the finite-dimensional approximations of the 
form PPk 

(f - cii(y 
f(t)dS. t EI’;; 

(f (t) represents the right-hand side of (7)). Let us number the unknowns CZ+; and firiti ac- 
cording to the rule x.\ ‘(P-l)ntZ:;-1 -- ‘Pky "2(P-lbw2X zz P PL 

p = 1, 2, . . .) m, k = 1, 2, . . ., n 

apk? ppk = Xi and aUl, fiUr = xj we obtain 

1 
c 

dS 
% =- 

2x b (t - n&P(t- q 
_i’ rl (as - +-’ (as - “l)-l + (9) 

L?=l , k-l 

k+l 

when i + j - 1 is even, and 

(10) 

when i + j - 1 is odd. 

The integrals in (9) and (10) can be evaluated using the method of residues. A prime 
means that the terms containing s = k, 1 are omitted from the corresponding sum, and 
{aij} is a symmetric matrix of the normal system, The expressions for the free term of 

analogous, though simpler structure, have been omitted to save space. 

A program for solving the system using the square root method was written and used 

to perform the calculations on a computer. In practice, not only the number of holes is 
given, but also their relative sizes and distribution, i. e. the geometry of the region. The 

latter depends only implicitly on the input parameters ak and Q of the program. 

From the number of runs accumulated we can assert that, if the holes are not too near 
each other, then the parameters should be chosen by mapping the given geometry of the 
z -plane onto the 6 -plane, otherwise choose one of the several computational versions 
available. 

The method converges rapidly irrespective to the relative distribution of the holes. 
Let us specify the load for n cyclically and symmetrically distributed holes as follows: 

or = Pt fro = 0, UX, q,,zxy = O(uniform pressure at the hole contours and zero load at 
infinity), ‘c = 2n/n, 1 ak I = H. We have 

‘kfl = 
et’ ak, rk = i-, k = 1, 2, . . ., n 

0 (,i, 5) = 2: 0 (ZJ, F (P 5) = e-i+ F (5) 
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therefore apk= e 
-i- 

‘P, k-l' ppk = eit&,, k-l 

and for a fixed m the order of the system (9) reduces to 2m. In the course of solving (9) 

we varied m from 3 to 15. Figure 1 depicts the required curves for n = 2 (a), n = 3 (b), 

n = 4 (c) and IZ = 6 (d), The curves I - 4 correspond to the values of the single- 
valued independent parameter 1 = Hr-1 sin%/2, li.>1.,equalto1.01,1.1,1,3and 

1.5. When h > 1 1 Eq.(?) with the given boundary conditions, has the obvious solution 

F(C) = $ (@a-- 0-‘1 &-@-= 5’ (c - u,$-l’ !JET’I (11) 
k=l k=l 

The prime denotes that the term with k = 1 is omitted in the sum. Expanding (11) 
in a L-series, we arrive to the solution of the problem which was obtained in [S] by a 

more complicated manner. 

Fig. 1 

Note, ~~Z]~eloadis~s~c~dto i<bla<- 0.187 for n = 2 * This results 
in a serious arithmetical error. The formula (3.17) in [2] should have the form zB = 

C, (1.23 -j- 0.23 b/a), i.e. 1 b / u I< i., and as the result, the case b = 0 is now included 

in the problem under discussion. The length of the slits and the distance between them 
should not be fixed for the symmetric case when n = 2 since this reduces the generality, 

but the admissible values of h for the chosen ratio b I a must be found from the explicit 

def~iti~ of the curve given by (3.17) and (3.18) in [2]. 
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We use the Pontriagin maximum principle to solve the problem of weight-opti- 
mal reinforcement of a shell acted upon by a nonuniform axisymmetric external 

load. When the problems of optimizing the constructional parameters and restric- 
tions are formulated, a class of solutions is always indicated and the optimal so- 

lution is chosen from this class. Earlier, the authors of [l] used the Pontriagin 
maximum principle to obtain the optimal distribution of material along the length 

of the shell under a nonuniform load. Below we solve a similar problem with a 
preliminary condition that the shell has constant thickness and transverse rein- 

forcing supports, 

We consider a semimembrane model of the shell, in which the axis of the frame is 
assumed to coincide with the median surface, and be inextensible. After separating the 
variables, the equation of stability yields 

The conditions of compatibility of deformations must hold at the points of the frame 
supports J .-y I,, I,,. . ., I, . Taking into account the fact that a passage across the frame 

is accompanied by a jump in the shearing and the longitudinal forces, we obtain the 
relations connecting the stresses and displacements in the form 

Here and henceforth we adopt the following notation : I, R and fi are the length, radius 


